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ABSTRACT

We investigate the mixing coefficients of interval maps satisfying
Rychlik’s conditions. A mixing Lasota—Yorke map is reverse ¢-mixing.
If its invariant density is uniformiy bounded away from 0, it is ¢-mixing
iff all images of all orders are big, in which case it is ¢-mixing. Among
B-transformations, non-¢-mixing is generic. In this sense, the asymmetry
of ¢-mixing is natural.

0. Introduction

MIXING AND MEASURES OF DEPENDENCE BETWEEN 0-ALGEBRAS. A mixing
property of a stationary stochastic process (..., X_1, Xo, X1, ...) reflects a decay
of the statistical dependence between the past o-algebra o ({ X} : k < 0}) and the
asymptotic future o-algebra o({X} : kK > n}) as n — oo and the various mixing
properties are described by corresponding measures of dependence between o-
algebras (see [Br]).
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Let (Q2, F, P) be a probability space, and let A, B C F be sub-o-algebras. We
consider the following measures of dependence:

PN B) - P(4)P(B)

?ﬁ(A,B) = SuP{ P(A)P(B) | :BEB+7AEA+}7
P(ANB
HAB) = sup(| Z5 i — P(BI|: B € B A € Ay},
B(A,B) := sup{% Z |P(anb) — P(a)P(b)|: ¢ C A, C B finite partitions},
a€(,beg

where, for C C F,C4 := {C € C : m(C) > 0}.
As shown in [Br],

BA,B) < 6(A B) < SU(A,5).

Note that 8(A4,B) = B(B,A) and ¥(B,A) = ¢¥(A,B) but it may be that
&(B, A) # ¢(A, B) (see [Br] and below).

Accordingly, we set ¢4 (A, B) := ¢(A, B) and ¢_(A, B) := ¢(B, A).

These measures of dependence give rise to the following mixing coefficients

of a stationary stochastic process (..., X_3, Xo, X1,...) defined on the proba-
bility space (2, F, P):

€(n) == &(e({Xi}i<o), o({ Xi}imnt1)) (€ = ¥, 64, 6-, B),

and the stationary stochastic process (..., X_1, X0, X1,...) is called £&-mixing
if £(n) — 0.

The n;;;([;i)erty B-mixing is also known as absolute regularity and weak
Bernoulli.

By stationarity, we have

€(n) = }chfl)g(o'({Xt}OStSk~l)»0'({Xt}t2n+k+1))(£ =1, ¢04,0_,5).

PIECEWISE MONOTONIC MAPS. A non-singular, piecewise monotonic
map (PM map) of the interval X := [0,1] is denoted (X,T,a), where a is a
finite or countable collection of open subintervals of X which is a partition in the
sense that | J,,
is a map such that T'|4 is absolutely continuous, strictly monotonic for each
Aca

Let (X,T,a) be a PM map. For each n > 1, (X,T", a,) is also a PM map,
where

a = X modm (where m is Lebesgue measure) and T: X — X

n—1
an = {[ag, - .., an-1] := m T *ay, : ag,...,an—1 € a}.
k=0
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A PM map (X,T,a) satisfies m o T~! « m, whence f € L®(m) = foT
€ L>®(m). Let T: L'(m) — L'(m) be the predual of f — f o T; then

Trg = Z vy lrngg o v,

acay,

where v,: T"a — a is given by v, := (T™|,)"!. Under certain additional
assumptions (see below), 3h € L'(m), h > 0, [, hdm =1, so that Th = h, i.e.
dP = hdm is an absolutely continuous, T-invariant probability (a.c.i.p.).

MIXING COEFFICIENTS OF PM maAPs. Now let (X,7,a) be a PM map with
a.c.i.p. P. We define the mixing coeflicients with respect to the probability
space (X, B(X), P):

&(n) ==sup&(o(af™), T-"MB(X)) (¢ =19, é4,0-,8)

E>1
and call the PM map £-mixing if {(n) — 0.
n—+00

EXAMPLE: GAUSS’ CONTINUED FRACTION MAP. This PM map (X, T, @) with
Tz = 1/zmod1 and h(z) = 1/In2(1 + z) was one of the first considered (see
[IK]). Following Kuzmin’s proof (in [Ku]) that 1771 = hllw < M8Y" (some
M > 0,6 € (0,1)), Khinchine noted ([Kh]) that

Y

Y*(n) = sup ||T"—2 — hlloo < MOV

a€ay,k>1 m(a)

This estimate was improved by Lévy to y*(n) < M6™ (see [L]).
To see that (X, T, @) is ¥-mixing, one estimates the similar

1 -~
¥°(n) := sup 17" (vgh 0 vs) — hP(a)]lco-

a€og,k>1 m(a)

The exponential convergence to zero of ¥°(n) was shown in {Go]. Theorem
1(b) is a generalization of this to non-Markov situations. The connection with
mixing is seen through the identity T7+*(1,h) = T"(v;hova) for k,n > 1,
a € ay, (see below).

RU MAPS. These are PM maps satisfying the conditions (U) and (R) below.
The PM map (X, T, a) is called uniformly expanding if

i U — .
(U) Luf (T (@) = 6> 15

and is said to
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o satisfy Rychlik’s condition ([Ry], see also [ADSZ)) if

(R) > lravillsy =R < oo,
A€o
where ||f|lBv := || flloo + V x f and v/; is that version of this L;-function

which minimizes variation.
Suppose that (X, T,a) satisfies (R) and (U); then by proposition 1 in [Ry],
AMy > 0,8 € (0,1) such that

(1) > Iimavyf o vallav < Mo(@"Ifllav + I flh) < 2Mollfllav  ¥n > 1.
a€ay,

It follows (see [Ry]) that the ergodic decomposition of (X, B(X),m,T) is finite,
that each ergodic component is open modm and that the tail (-, T~ "B is
finite and cyclic on each ergodic component. Moreover, on each ergodic compo-
nent C,3h = he: C = R, h >0, [, hdm =1, h € BV, [h > 0] open modm so
that Th = hand C = N2>, T~"[h > 0] mod m. The probability dPc = hcdm is
an ergodic a.c.i.p. for T. A RU map (X, T, @) which is conservative and ergodic
with respect to m is called basic. In this case, 3b: X - R, h >0, [ x hdm =1,
h € BV so that Th = h. A RU map (X, T, ) which is conservative and ergodic
with respect to m is called weakly mixing if (X, B(X), P,T) is weakly mixing
(where P ~ m is the a.c.i.p. for T).

Let (X, T, a) be a weakly mixing RU map; then it is exact with respect to m,
and 3C > 0, r € (0,1) so that

@) T f —/ fdmhlly < Crollfllsy Vf €BV, n>1
X

([Ry], see also the earlier [H-K] for the case where #a < 00).

AFU maPS. The PM map (X,T,a) is called C? if, forall A€ o, T: A —» TA
is a C? diffeomorphism. The C? PM (X, T, ) map is called an AFU map (as
in [Z]) if it satisfies (U),

(F) Ta:={TA: A€ a} is finite;
and

17"
(A) Sl)l(p TRE < 00.

A Lasota~Yorke (LY) map is an AFU map (X,T,a) with « finite (as in
[L-Y]).
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Let (X, T, ) be an AFU map; then as can be gleaned from [Z],
e (X, T,a) is a RU map whose ergodic components are finite unions of

intervals,
® 1jhso; € BV (and § € BV in case (X, T, ) is basic) whenever h € BV,
h>0,Th=h,

e 4K > 0 so that

() ()] < Kol (a), v;<x>=e“% Vn>1, a€an

1. Mixing coeflicients of RU maps
As shown in [Ry], if (X, T, a) is a weakly mixing RU map, then

Bn) <2CMo|hllsyr™  (n>1)

where Mp is as in (1) and C > 0,r € (0,1) are as in (2) (see the remark after
Lemma 2 below).

THEOREM 1:
(a) Let (X,T,a) be a weakly mixing RU map.
If inf(, g  h > 0, then 3B > 0 so that ¢_(n) < Br™.
(b) Let (X,T,a) be a basic, weakly mixing AFU map.
Ifinf,>1 0ca, m{(T"a) > 0, then 3B > 0 so that ¥(n) < Br™.
(c) Let (X,T,a) be a PM map with a.cip. P € m,#a < oo and so that
o({T™"a:n > 0}) = B(X).
Ifinfy,>1 aca, m(T™a) = 0, then ¢4 (n) = 1¥n > 1.

Remarks: (1) It follows that ¢_(n) — 0 exponentially for any weakly mixing
AFU map. This result was announced in [Go] for S-transformations.

(2) Part (b) of the theorem is only established for basic maps as we do not
know whether inf,>1 4cq, m(T™a) > 0 implies

inf{(m(T"aN[h>0]):n>1,a € ap,m(an[h>0]) >0} >0.
PROOF OF THEOREM 1.

LEMMA 2: Let (X,T,a) be a weakly mixing RU map; then

|[P(ANT~("*¥)B) — P(B)P(A)| < Mr"m(B N [h > 0])
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Vn,k > 1,A € o(ar), B € B(X), where M := 2C My||h||sv with My as in (1)
and C >0, r € (0,1) as in (2).

Proof: We show first that
@) A
¢° (n) := sup{||T"*(1ah) — P(A)h|loc : k > 1, A € 0(0)} < Mr™ Vn > 1.

The sequence ¢° (n) is the analogue of ¥°(n) for ¢_-mixing.
To see (4), fix k > 1 and suppose that A € o(ax), A =, @ Where a C ay;
then

T*(hla) =Y vhlregho v,

aca
P(4) =Y P@)=Y / v h o vadm,
a€a aca?TFa
and for n > 1,
Ttk (14h) = Z f”(vfllTkah 0 g).
aca
Thus

IT"**(1ah) — P(A)hlloo < S IT™ (W) 17x0h 0 va) — h/ vah 0 vadml|os
Tk

a€a a

<Cr* Y lvplrrghovallsy by (2)
ac€a

< 2CMpllhllsvr™ by (1),

establishing (4). Using (4), for k > 1, A € a, B € B,

|P(ANT-("*® B) — P(A)P(B)| =

/ (Tm*E(14h) — P(A)h)dm
BN[h>0]
<Mr"m(BNh>0). =&

Remark: It was shown in [Ry], using a version of Lemma 2, that for a weakly
mixing RU map, {n) < Mr™.

Proof of Theorem 1 (a): By Lemma 2, for n,k > 1, A € o(ay), B € B(X),
|P(ANT- ("% B) — P(B)P(4)| < Mr"m(Bn[h > 0))

< MH%”L*([hm])rnP(B)' '
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Proof of Theorem 1 (b): We show first that if inf,>; scq, m(T"a) =:n > 0,
then

(5) 1T (1,h) — P(a)hle < Mir™m(a) YN, n>1, a € ay

where M; := 4Ce¥||h||gv/n. A standard calculation shows that

~ - m(a
(©) I Lafllow = i dreah o vallsy < 4ehllav 02 Vb2 1, a € an.

To see (5), fix N,n > 1,a € ay, and note that fN(lah) = lpnvghov,v). By
(2), (3) and (6),
1T+ (1ah) = P(@)hlloo = IT™(Lrwah 0 vavy) = P(a)hlloo

< Cr™||1pn h o v, vl ||BY

< 40X ||h||py ng?v)a) ™ < Myr"m(a).

Now let N > 1 and suppose that A € g(an), A = [J,cq@ Where a C ay. It
follows from (5) that VB € B, n > 1,

|P(ANT~("*N)B) — P(A)P(B)| < / |T™ N (14h) — P(A)h|dm
B
< m(B)||IT"*N (14h) ~ P(A)h]]s
< Myr"m(B) Zm(a)

a€a
= Mir"m(A)m(B)
1 2
<m(|z] ) mPar®.  w
Proof of Theorem 1 {c): Since c({T "« :n > 0}) = B(X),
max{m(a):a € ap} -0 asn — oo.
Fix 0 < € < 1 and choose £ > 1 so that max{m(a) : a € oy} < €/2||h||co-
We show that ¢, (N) > 1— VN > 1. Indeed, fix N > 1.
Since infr>1,0¢a, M(T"a) = 0, and #anyr < 00, Ik > 1, w € a; so that
m(T*w) < min{m(a) : a € any¢}.
Since T*w is an interval, 3b = [by,...,by1e), ¢ = [c1,---,CNne] € QNye 50
that TF*w Cc J := bW e Next, TVNJ C [bN+1,. .. ,bN.Hg] U [CN+1,. ~aCN+Z] €

o(ag), whence m(TVJ) < 2max{m(a) : a € av} < €/||hlloo and IB € o(ay),
BNTNJ =0, m(B) >1-€/||h||co- It follows that P(B) > 1 — ¢, and that

¢+ (N)>P(B) - P(T-W*¥Blw)=P(B)>1—-¢. 1
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2. Examples

B-EXPANSIONS. For § > 1, consider (X, T3,a) where X = [0,1], Tg: X - X
is given by Tz := {8z} and

. l Jj+ 1y 811 6]
o={555 ) G}
As shown in [Pa), (X,Ts,a) is a basic LY map. Theorem 1(a) applies and
¢—(n) — 0 exponentially. To apply Theorem 1(b), we prove:

PRoPOSITION 3:

. oY s n
(7) nlengQ" m(Tga) = 71Lr21f1 T31.

Proof: Define (as in [Pa]) m: X — {0,1,...,[8]}N by n(x), := [BTg_lx] and
set Xg = mg(I). Let < denote lexicographic order on {0,1,...,[]}N. Then
(see [Pa]) z < y implies 7(z) < m(y) and that m(z) < 7(y) implies z < y.

Let

W= wp = {(al,ag,...,aq_l,aq —1), mp(l) =(a1,a2,...,a4-1,24,0),
7g(1) else.
By [Pal,
®) Xp = {y € 0,1, BV : 4 < ¥k > 1},
where y° := (Y&, Yk+1,-..). For a =lai,...,an] € ay, define
Kn(a) = {?nax{l <n<N,ay_,., =wl} fllseS N o =l

(where a¥ := (aj,a;11,...,ax)). Then by (8),
(a1, ..., an])) = {2 € Xp 1 7 < W, (421} = 7[0,T5 1),

whence Té\’ [a1,...,an] = [0, TBK v(e) 1). The proposition follows from this. |

Thus by Theorem 1(b), T is ¢-mixing iff inf,>; T71 > 0, or equivalently
(see [Bl}), X3 is specified in the sense that 3L > 1 so that
m(aNT; P8 >0 Vaea;, bea;.

As shown in [S], the set {# > 1 : Xz specified} is a meagre set of Lebesgue
measure zero and Hausdorff dimension 1 in R and so exponential ¢-mixing
occurs for many 3 > 1 for which Xj is not sofic.
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“JAPANESE” CONTINUED FRACTIONS. Fix o € (0,1] and define T = T, :
[ —1,0) O by

S FRE

These maps generalize the well-known Gauss map T;. For « € (0,1), T, is a

topologically mixing, basic AFU map, whence by Theorem 1,

e exponentially reverse ¢-mixing, and
e exponentially ¥-mixing when inf{m(T"a) : n > 1,a € o} > 0.
Theorem 1(c) does not apply since #a = oo. However, as shown in [N-NJ,

for Lebesgue a.e. 3 < a <1, T, is not ¢ -mixing.
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