ON THE MIXING COEFFICIENTS OF PIECEWISE MONOTONIC MAPS

BY

JON AARONSON

School of Mathematical Sciences, Tel Aviv University 69978 Tel Aviv, Israel e-mail: aaro@tau.ac.il

AND

HITOSHI NAKADA

Department of Mathematics, Keio University Hiyoshi 3-1~,-1 Kohoku, Yokohama 223, Japan e-mail: nakada@math.keio.ac.jp

ABSTRACT

We investigate the mixing coefficients of interval maps satisfying Rychlik's conditions. A mixing Lasota-Yorke map is reverse ϕ -mixing. If its invariant density is uniformly bounded away from 0, it is ϕ -mixing iff all images of all orders are big, in which case it is ψ -mixing. Among β -transformations, non- ϕ -mixing is generic. In this sense, the asymmetry of ϕ -mixing is natural.

O. Introduction

MIXING AND MEASURES OF DEPENDENCE BETWEEN σ -ALGEBRAS. A mixing property of a stationary stochastic process $(\ldots, X_{-1}, X_0, X_1, \ldots)$ reflects a decay of the statistical dependence between the past σ -algebra $\sigma({X_k : k \leq 0})$ and the asymptotic future σ -algebra $\sigma({X_k : k \geq n})$ as $n \to \infty$ and the various mixing properties are described by corresponding measures of dependence between σ algebras (see [Br]).

Received July 27, 2004 and in revised form September 12, 2004

Let (Ω, \mathcal{F}, P) be a probability space, and let $\mathcal{A}, \mathcal{B} \subset \mathcal{F}$ be sub- σ -algebras. We consider the following measures of dependence:

$$
\psi(A, \mathcal{B}) := \sup \{ \left| \frac{P(A \cap B) - P(A)P(B)}{P(A)P(B)} \right| : B \in \mathcal{B}_+, A \in \mathcal{A}_+ \},
$$

$$
\phi(A, \mathcal{B}) := \sup \{ \left| \frac{P(A \cap B)}{P(A)} - P(B) \right| : B \in \mathcal{B}_+, A \in \mathcal{A}_+ \},
$$

 $\beta(\mathcal{A}, \mathcal{B}) := \sup\left\{ \frac{1}{2} \sum_{i=1}^n |P(a \cap b) - P(a)P(b)| : \zeta \subset \mathcal{A}, \xi \subset \mathcal{B} \text{ finite partitions} \right\},$ $a{\in} \zeta, b{\in} \xi$

where, for $C \subset \mathcal{F}, C_+ := \{C \in \mathcal{C} : m(C) > 0\}.$ As shown in [Br],

$$
\beta(\mathcal{A},\mathcal{B}) \leq \phi(\mathcal{A},\mathcal{B}) \leq \frac{1}{2}\psi(\mathcal{A},\mathcal{B}).
$$

Note that $\beta(\mathcal{A}, \mathcal{B}) = \beta(\mathcal{B}, \mathcal{A})$ and $\psi(\mathcal{B}, \mathcal{A}) = \psi(\mathcal{A}, \mathcal{B})$ but it may be that $\phi(\mathcal{B}, \mathcal{A}) \neq \phi(\mathcal{A}, \mathcal{B})$ (see [Br] and below).

Accordingly, we set $\phi_+(\mathcal{A}, \mathcal{B}) := \phi(\mathcal{A}, \mathcal{B})$ and $\phi_-(\mathcal{A}, \mathcal{B}) := \phi(\mathcal{B}, \mathcal{A}).$

These measures of dependence give rise to the following mixing coefficients of a stationary stochastic process $(\ldots, X_{-1}, X_0, X_1, \ldots)$ defined on the probability space (Ω, \mathcal{F}, P) :

$$
\xi(n) := \xi(\sigma(\{X_t\}_{t\leq 0}), \sigma(\{X_t\}_{t\geq n+1}))(\xi = \psi, \phi_+, \phi_-, \beta),
$$

and the stationary stochastic process $(\ldots, X_{-1}, X_0, X_1, \ldots)$ is called ξ -mixing if $\xi(n) \longrightarrow 0$.

The property β -mixing is also known as absolute regularity and weak **Bernoulli.**

By stationarity, we have

$$
\xi(n) = \sup_{k \geq 1} \xi(\sigma(\{X_t\}_{0 \leq t \leq k-1}), \sigma(\{X_t\}_{t \geq n+k+1})) (\xi = \psi, \phi_+, \phi_-, \beta).
$$

PIECEWISE MONOTONIC MAPS. A non-singular, piecewise **monotonic map** (PM map) of the interval $X := [0, 1]$ is denoted (X, T, α) , where α is a finite or countable collection of open subintervals of X which is a partition in the sense that $\bigcup_{a\in\alpha}a=X\bmod m$ (where m is Lebesgue measure) and $T: X\to X$ is a map such that T_A is absolutely continuous, strictly monotonic for each $A\in\alpha.$

Let (X, T, α) be a PM map. For each $n \ge 1$, (X, T^n, α_n) is also a PM map, where

$$
\alpha_n := \{ [a_0, \ldots, a_{n-1}] := \bigcap_{k=0}^{n-1} T^{-k} a_k : a_0, \ldots, a_{n-1} \in \alpha \}.
$$

A PM map (X, T, α) satisfies $m \circ T^{-1} \ll m$, whence $f \in L^{\infty}(m) \Rightarrow f \circ T$ $\in L^{\infty}(m)$. Let $\widehat{T}: L^{1}(m) \to L^{1}(m)$ be the predual of $f \mapsto f \circ T$; then

$$
\widehat{T}^n g = \sum_{a \in \alpha_n} v'_a 1_{T^n a} g \circ v_a
$$

where $v_a: T^n a \rightarrow a$ is given by $v_a := (T^n|_a)^{-1}$. Under certain additional assumptions (see below), $\exists h \in L^1(m)$, $h \geq 0$, $\int_X h dm = 1$, so that $\widehat{T}h = h$, i.e. $dP = hdm$ is an absolutely continuous, T-invariant probability (a.c.i.p.).

MIXING COEFFICIENTS OF PM MAPS. Now let (X, T, α) be a PM map with a.c.i.p. P . We define the mixing coefficients with respect to the probability space $(X, \mathcal{B}(X), P)$:

$$
\xi(n) := \sup_{k \ge 1} \xi(\sigma(\alpha_0^{k-1}), T^{-(n+k)}\mathcal{B}(X)) \quad (\xi = \psi, \phi_+, \phi_-, \beta)
$$

and call the PM map ξ -mixing if $\xi(n) \longrightarrow 0$.

EXAMPLE: GAUSS' CONTINUED FRACTION MAP. This PM map (X, T, α) with $Tx = 1/x \mod 1$ and $h(x) = 1/\ln 2(1+x)$ was one of the first considered (see [I-K]). Following Kuzmin's proof (in [Ku]) that $\|\widehat{T}^n\| - h\|_{\infty} \leq M\theta^{\sqrt{n}}$ (some $M > 0, \theta \in (0, 1)$, Khinchine noted ([Kh]) that

$$
\psi^{\star}(n) := \sup_{a \in \alpha_k, k \ge 1} \|\widehat{T}^n \frac{v_a'}{m(a)} - h\|_{\infty} \le M\theta^{\sqrt{n}}.
$$

This estimate was improved by Lévy to $\psi^*(n) < M\theta^n$ (see [L]).

To see that (X, T, α) is ψ -mixing, one estimates the similar

$$
\psi^{\circ}(n) := \sup_{a \in \alpha_k, k \geq 1} \frac{1}{m(a)} ||\widehat{T}^n(v'_a h \circ v_a) - hP(a)||_{\infty}.
$$

The exponential convergence to zero of $\psi^{\circ}(n)$ was shown in [Go]. Theorem l(b) is a generalization of this to non-Markov situations. The connection with mixing is seen through the identity $\hat{T}^{n+k}(1_a h) = \hat{T}^n(v'_a h \circ v_a)$ for $k, n \geq 1$, $a \in \alpha_k$ (see below).

RU MAPS. These are PM maps satisfying the conditions (U) and (R) below. The PM map (X, T, α) is called uniformly expanding if

$$
\inf_{x \in a \in \alpha} |T'(x)| =: \beta > 1;
$$

and is said to

• satisfy Rychlik's condition ($\lbrack Ryl\rbrack$, see also $\lbrack ADSZ\rbrack$) if

(R)
$$
\sum_{A \in \alpha} ||1_{TA} v'_A||_{BV} =: \mathcal{R} < \infty,
$$

where $||f||_{BV} := ||f||_{\infty} + \bigvee_X f$ and v'_A is that version of this L_1 -function which minimizes variation.

Suppose that (X, T, α) satisfies (R) and (U); then by proposition 1 in [Ry], $\exists M_0 > 0, \theta \in (0,1)$ such that

$$
(1) \quad \sum_{a \in \alpha_n} \|1_{T^n a} v'_a f \circ v_a\|_{BV} \leq M_0(\theta^n \|f\|_{BV} + \|f\|_1) \leq 2M_0 \|f\|_{BV} \quad \forall n \geq 1.
$$

It follows (see [Ry]) that the ergodic decomposition of $(X, \mathcal{B}(X), m, T)$ is finite, that each ergodic component is open mod m and that the tail $\bigcap_{n=0}^{\infty} T^{-n} \mathcal{B}$ is finite and cyclic on each ergodic component. Moreover, on each ergodic component *C*, $\exists h = h_C: C \rightarrow \mathbb{R}, h \geq 0, \int_X h dm = 1, h \in BV$, $[h > 0]$ open mod *m* so that $\widehat{T}h = h$ and $C = \bigcap_{n=0}^{\infty} T^{-n}[h > 0] \mod m$. The probability $dP_C = h_C dm$ is an ergodic a.c.i.p. for T. A RU map (X, T, α) which is conservative and ergodic with respect to m is called **basic**. In this case, $\exists h: X \to \mathbb{R}$, $h > 0$, $\int_X h dm = 1$, $h \in BV$ so that $\widehat{T}h = h$. A RU map (X, T, α) which is conservative and ergodic with respect to m is called **weakly mixing** if $(X, \mathcal{B}(X), P, T)$ is weakly mixing (where $P \sim m$ is the a.c.i.p. for T).

Let (X, T, α) be a weakly mixing RU map; then it is exact with respect to m, and $\exists C > 0, r \in (0,1)$ so that

(2)
$$
\|\widehat{T}^n f - \int_X f dm h\|_{BV} \leq C r^n \|f\|_{BV} \quad \forall f \in BV, n \geq 1
$$

([Ry], see also the earlier [H-K] for the case where $\#\alpha < \infty$).

AFU MAPS. The PM map (X, T, α) is called C^2 if, for all $A \in \alpha$, $T: \overline{A} \to T\overline{A}$ is a C^2 diffeomorphism. The C^2 PM (X, T, α) map is called an **AFU map** (as in [Z]) if it satisfies (V),

(F)
$$
T\alpha := \{TA : A \in \alpha\} \text{ is finite};
$$

and

$$
\sup_{X} \frac{|T''|}{(T')^2} < \infty.
$$

A Lasota-Yorke (LY) map is an AFU map (X, T, α) with α finite (as in $[L-Y]$.

Let (X, T, α) be an AFU map; then as can be gleaned from [Z],

- \bullet (X, T, α) is a RU map whose ergodic components are finite unions of intervals,
- $1_{[h>0]}$ $\frac{1}{h} \in BV$ (and $\frac{1}{h} \in BV$ in case (X, T, α) is basic) whenever $h \in BV$, $h>0, \widehat{T}h=h,$
- $\exists K>0$ so that

$$
(3) \qquad |v''_a(x)| \leq K v'_a(x), \quad v'_a(x) = e^{\pm K} \frac{m(a)}{m(T^n a)} \quad \forall n \geq 1, \ a \in \alpha_n.
$$

1. Mixing coefficients of RU maps

As shown in [Ry], if (X, T, α) is a weakly mixing RU map, then

$$
\beta(n) \le 2CM_0 \|h\|_{\text{BV}} r^n \quad (n \ge 1)
$$

where M_0 is as in (1) and $C > 0, r \in (0, 1)$ are as in (2) (see the remark after Lemma 2 below).

THEOREM 1:

(a) Let (X, T, α) be a weakly mixing RU map.

If $\inf_{h>0} h > 0$, then $\exists B > 0$ so that $\phi_-(n) < Br^n$.

(b) Let (X, T, α) be a basic, weakly mixing AFU map.

If $\inf_{n>1, a\in\alpha_n} m(T^na) > 0$, then $\exists B > 0$ so that $\psi(n) \leq Br^n$.

(c) Let (X, T, α) be a PM map with a.c.i.p. $P \ll m, \# \alpha < \infty$ and so that $\sigma({T^{-n}\alpha : n \geq 0}) = \mathcal{B}(X).$

If $\inf_{n \geq 1, a \in \alpha_n} m(T^n a) = 0$, then $\phi_+(n) = 1 \forall n \geq 1$.

Remarks: (1) It follows that $\phi_-(n) \to 0$ exponentially for any weakly mixing AFU map. This result was announced in [Go] for β -transformations.

(2) Part (b) of the theorem is only established for basic maps as we do not know whether $\inf_{n>1, a\in\alpha_n} m(T^n a) > 0$ implies

$$
\inf \{ m(T^n a \cap [h > 0]) : n \ge 1, a \in \alpha_n, m(a \cap [h > 0]) > 0 \} > 0.
$$

PROOF OF THEOREM 1.

LEMMA 2: Let (X, T, α) be a weakly mixing RU map; then

 $|P(A \cap T^{-(n+k)}B) - P(B)P(A)| \le Mr^n m(B \cap [h > 0])$

 $\forall n, k \geq 1, A \in \sigma(\alpha_k), B \in \mathcal{B}(X)$, where $M := 2CM_0 ||h||_{BV}$ with M_0 as in (1) and $C > 0$, $r \in (0,1)$ as in (2).

Proof'. We show first that **(4)** $r_1^{\circ}(n) := \sup\{\|\widehat{T}^{n+k}(1_A h) - P(A)h\|_{\infty} : k \geq 1, A \in \sigma(\alpha_k)\} \leq Mr^n \quad \forall n > 1.$

The sequence $\phi^{\circ}(n)$ is the analogue of $\psi^{\circ}(n)$ for ϕ -mixing.

To see (4), fix $k \ge 1$ and suppose that $A \in \sigma(\alpha_k)$, $A = \bigcup_{a \in \mathfrak{a}} a$ where $\mathfrak{a} \subseteq \alpha_k$; then

$$
\widehat{T}^k(h1_A) = \sum_{a \in \mathfrak{a}} v'_a 1_{T^k a} h \circ v_a,
$$

$$
P(A) = \sum_{a \in \mathfrak{a}} P(a) = \sum_{a \in \mathfrak{a}} \int_{T^k a} v'_a h \circ v_a dm,
$$

and for $n \geq 1$,

$$
\widehat{T}^{n+k}(1_Ah) = \sum_{a \in \mathfrak{a}} \widehat{T}^n(v'_a 1_{T^ka} h \circ v_a).
$$

Thus

$$
\begin{aligned} ||\widehat{T}^{n+k}(1_Ah) - P(A)h||_{\infty} &\leq \sum_{a \in \mathfrak{a}} ||\widehat{T}^n(v_a' 1_{T^k a} h \circ v_a) - h \int_{T^k a} v_a' h \circ v_a dm||_{\infty} \\ &\leq C r^n \sum_{a \in \mathfrak{a}} ||v_a' 1_{T^k a} h \circ v_a||_{\text{BV}} \quad \text{by (2)} \\ &\leq 2 C M_0 ||h||_{\text{BV}} r^n \quad \text{by (1)}, \end{aligned}
$$

establishing (4). Using (4), for $k \geq 1$, $A \in \alpha_k$, $B \in \mathcal{B}$,

$$
|P(A \cap T^{-(n+k)}B) - P(A)P(B)| = \left| \int_{B \cap [h>0]} (\widehat{T}^{n+k}(1_A h) - P(A)h) dm \right|
$$

\$\leq Mrⁿm(B \cap [h>0]). \qquad \blacksquare

Remark: It was shown in [Ry], using a version of Lemma 2, that for a weakly mixing RU map, $\beta(n) \leq Mr^n$.

Proof of Theorem 1 (a): By Lemma 2, for $n, k \ge 1$, $A \in \sigma(\alpha_k)$, $B \in \mathcal{B}(X)$,

$$
|P(A \cap T^{-(n+k)}B) - P(B)P(A)| \le Mr^n m(B \cap [h > 0])
$$

$$
\le M \left\| \frac{1}{h} \right\|_{L^{\infty}([h > 0])} r^n P(B).
$$

Proof of Theorem 1 (b): We show first that if $\inf_{n>1, a\in\alpha_n} m(T^n a) =: \eta > 0$, then

$$
(5) \t\t ||\widehat{T}^{n+N}(1_a h) - P(a)h||_{\infty} \le M_1 r^n m(a) \quad \forall N, \; n \ge 1, \; a \in \alpha_N
$$

where $M_1 := 4Ce^{K}||h||_{BV}/\eta$. A standard calculation shows that

(6)
$$
\|\hat{T}^k(1_a h)\|_{BV} = \|v_a' 1_{T^k a} h \circ v_a\|_{BV} \leq 4e^K \|h\|_{BV} \frac{m(a)}{m(T^k a)} \quad \forall k \geq 1, \ a \in \alpha_k.
$$

To see (5), fix $N, n \geq 1, a \in \alpha_N$, and note that $\widehat{T}^N(1_a h) = 1_{T^N a} h \circ v_a v'_a$. By (2), (3) and (6),

$$
\begin{aligned} ||\widehat{T}^{n+N}(1_a h) - P(a)h||_{\infty} &= ||\widehat{T}^n(1_{T^N a} h \circ v_a v_a') - P(a)h||_{\infty} \\ &\leq Cr^n ||1_{T^N a} h \circ v_a v_a' ||_{\text{BV}} \\ &\leq 4Ce^K ||h||_{\text{BV}} \frac{m(a)}{m(T^N a)} r^n \leq M_1 r^n m(a). \end{aligned}
$$

Now let $N \ge 1$ and suppose that $A \in \sigma(\alpha_N)$, $A = \bigcup_{a \in \mathfrak{a}} a$ where $\mathfrak{a} \subseteq \alpha_N$. It follows from (5) that $\forall B \in \mathcal{B}, n \geq 1$,

$$
|P(A \cap T^{-(n+N)}B) - P(A)P(B)| \le \int_B |\widehat{T}^{n+N}(1_Ah) - P(A)h|dm
$$

\n
$$
\le m(B)||\widehat{T}^{n+N}(1_Ah) - P(A)h||_{\infty}
$$

\n
$$
\le M_1 r^n m(B) \sum_{a \in a} m(a)
$$

\n
$$
= M_1 r^n m(A)m(B)
$$

\n
$$
\le M_1 \left(\left\| \frac{1}{h} \right\|_{\infty} \right)^2 r^n P(A)P(B).
$$

Proof of Theorem 1 (c): Since $\sigma({T^{-n}\alpha : n \ge 0}) = \mathcal{B}(X)$,

 $\max\{m(a):a\in\alpha_n\}\to 0$ as $n\to\infty$.

Fix $0 < \epsilon < 1$ and choose $\ell \geq 1$ so that $\max\{m(a) : a \in \alpha_{\ell}\} < \epsilon/2||h||_{\infty}$. We show that $\phi_+(N) \geq 1 - \epsilon \forall N \geq 1$. Indeed, fix $N \geq 1$.

Since $\inf_{n>1,a\in\alpha_n} m(T^na) = 0$, and $\#\alpha_{N+\ell} < \infty$, $\exists k \geq 1, \omega \in \alpha_k$ so that $m(T^k\omega) < \min\{m(a) : a \in \alpha_{N+\ell}\}.$

Since $T^k \omega$ is an interval, $\exists b = [b_1, \ldots, b_{N+\ell}], c = [c_1, \ldots, c_{N+\ell}] \in \alpha_{N+\ell}$ so that $T^k \omega \subset J := b \uplus c$. Next, $T^N J \subset [b_{N+1}, \ldots, b_{N+\ell}] \cup [c_{N+1}, \ldots, c_{N+\ell}] \in$ $\sigma(\alpha_{\ell})$, whence $m(T^N J) \leq 2 \max\{m(a) : a \in \alpha_{\ell}\} < \epsilon/\|h\|_{\infty}$ and $\exists B \in \sigma(\alpha_{\ell})$, $B \cap T^N J = \emptyset$, $m(B) > 1 - \epsilon/||h||_{\infty}$. It follows that $P(B) > 1 - \epsilon$, and that

$$
\phi_+(N) \ge P(B) - P(T^{-(N+k)}B|\omega) = P(B) > 1 - \epsilon. \quad \blacksquare
$$

2. Examples

 β -EXPANSIONS. For $\beta > 1$, consider (X, T_{β}, α) where $X = [0, 1], T_{\beta}: X \rightarrow X$ is given by $T_{\beta}x := \{\beta x\}$ and

$$
\alpha:=\Big\{\Big[\frac{j}{\beta},\frac{j+1}{\beta}\Big)\Big\}_{j=0}^{[\beta]-1}\cup\Big\{\Big[\frac{[\beta]}{\beta},1\Big)\Big\}.
$$

As shown in [Pa], (X, T_β, α) is a basic LY map. Theorem 1(a) applies and $\phi_{-}(n) \rightarrow 0$ exponentially. To apply Theorem 1(b), we prove:

PROPOSITION 3:

(7)
$$
\inf_{n \ge 1, a \in \alpha_n} m(T^n_\beta a) = \inf_{n \ge 1} T^n_\beta 1.
$$

Proof: Define (as in [Pa]) $\pi: X \to \{0, 1, \ldots, [\beta]\}^{\mathbb{N}}$ by $\pi(x)_n := [\beta T_\beta^{n-1}x]$ and set $X_{\beta} := \overline{\pi_{\beta}(I)}$. Let \prec denote lexicographic order on $\{0, 1, \ldots, [\beta]\}^{\mathbb{N}}$. Then (see [Pa]) $x < y$ implies $\pi(x) \prec \pi(y)$ and that $\pi(x) \prec \pi(y)$ implies $x \leq y$.

Let

$$
\omega = \omega_{\beta} := \begin{cases} \overline{(a_1, a_2, \ldots, a_{q-1}, a_q - 1)}, & \pi_{\beta}(1) = (a_1, a_2, \ldots, a_{q-1}, a_q, \overline{0}), \\ \pi_{\beta}(1) & \text{else.} \end{cases}
$$

By [Pa],

(8)
$$
X_{\beta} = \{y \in \{0, 1, \ldots, [\beta]\}^{\mathbb{N}} : y_k^{\infty} \prec \omega \forall k \geq 1\},\
$$

where $y_k^{\infty} := (y_k, y_{k+1}, \ldots)$. For $a = [a_1, \ldots, a_N] \in \alpha_N$, define

$$
K_N(a) := \begin{cases} 0 & \nexists 1 \le n \le N, \ a_{N-n+1}^N = \omega_1^n \\ \nmax\{1 \le n \le N, \ a_{N-n+1}^N = \omega_1^n\} & \text{else} \n\end{cases} \n\neq 0
$$

(where $a_j^k := (a_j, a_{j+1}, \ldots, a_k)$). Then by (8),

$$
\pi([a_1,\ldots,a_N]) = \{x \in X_\beta : x \prec \omega_{K_N(a)+1}^{\infty}\} = \pi[0,T_\beta^{K_N(a)}1),
$$

whence $T_{\beta}^{N}[a_1,\ldots,a_N] = [0, T_{\beta}^{K_N(a)}1]$. The proposition follows from this.

Thus by Theorem 1(b), T_{β} is ψ -mixing iff $\inf_{n\geq 1} T_{\beta}^{n} 1 > 0$, or equivalently (see [Bl]), X_β is specified in the sense that $\exists L \geq 1$ so that

$$
m(a \cap T_{\beta}^{-(i+L)}b) > 0 \quad \forall a \in \alpha_i, \ b \in \alpha_j.
$$

As shown in [S], the set $\{\beta > 1 : X_\beta \text{ specified}\}\$ is a meagre set of Lebesgue measure zero and Hausdorff dimension 1 in $\mathbb R$ and so exponential ψ -mixing occurs for many $\beta > 1$ for which X_{β} is not sofic.

"JAPANESE" CONTINUED FRACTIONS. Fix $\alpha \in (0,1]$ and define $T = T_{\alpha}$: $[\alpha-1,\alpha)\circlearrowleft$ by

$$
T_{\alpha}x := \left|\frac{1}{x}\right| - \left[\left|\frac{1}{x}\right| + 1 - \alpha\right].
$$

These maps generalize the well-known Gauss map T_1 . For $\alpha \in (0,1)$, T_α is a topologically mixing, basic AFU map, whence by Theorem 1,

- exponentially reverse ϕ -mixing, and
- exponentially ψ -mixing when $\inf \{m(T^n a) : n \geq 1, a \in \alpha_n\} > 0$.

Theorem 1(c) does not apply since $\#\alpha = \infty$. However, as shown in [N-N], for Lebesgue a.e. $\frac{1}{2} < \alpha < 1$, T_{α} is not ϕ_+ -mixing.

References

- [ADSZ] J. Aaronson, M. Denker, O. Sarig and R. Zweimüller, *Aperiodicity of cocycles and conditional local limit theorems,* Stochastics and Dynamics 4 (2004), 31- 62.
- [B1] F. Blanchard, β -expansions and symbolic dynamics, Theoretical Computer Science 65 (1989), 131-141.
- **[Br]** R. C. Bradley, *Basic properties of strong mixing conditions,* in *Dependence in Probability and Statistics (Oberwolfach, 1985),* Progress in Probability and Statistics 11, Birkhäuser Boston, Boston, MA, 1986, pp. 165-192.
- [Go] M. I. Gordin, *Stochastic processes generated by number-theoretic endomorphisms* (English), Soviet Mathematics Doklady 9 (1968), 1234-1237 (translation from Russian: Doklady Akademii Nauk SSSR 182 (1968), 1004-1006).
- **[H-K]** F. Hofoauer and G. Keller, *Ergodic properties of invariant measures for piecewise monotonic transformations,* Mathematische Zeitschrift 180 (1982), 119 140.
- $[I-K]$ M. Iosifescu and C. Kraaikamp, *Metrical Theory of Continued Fractions* (Mathematics and its Applications, 547), Kluwer Academic Publishers, Dordrecht, 2002.
- **[Kh]** A. Ya. Khintchine, *Continued Fractions,* P. Noordhoff, Ltd., Groningen, 1963 (translation from Russian: *Cepnye drobi,* Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1935).
- [Ku] R. Kuzmin, *On a problem of* Gauss, Doklady Akademii Nauk SSSR, Seriya A (1928), 375 380 (Russian; French translation in: Atti Congresso Internaz. Mat. (Bologna, 1928), Tom VI, Zanichelli, Bologna, 1932, pp. 83-89).
- $[L-Y]$ A. Lasota and J. Yorke, *On the existence of invariant measures for piecewise monotonic transformations,* Transactions of the American Mathematical Society 186 (1973), 481-488.
- $[L]$ P. L6vy, *Thdorie de l'addition* des *variables al6atoires* (French), (Monogr. d. probabilit, calcul d. probabilit, et ses appl. 1), XVII, Gauthier-Villars, Paris, 1937.
- **[N-N]** H. Nakada and R. Natsui, *Some* strong *mixing properties of a sequence of random variables arising from a-continued fractions,* Stochastics Dynamics 3 (2003), 463-476.
- **[Pal** W. Parry, *On the* β *-expansions of real numbers*, Acta Mathematica Academiae Scientiarum Hungaricae 11 (1960), 401-416.
- $[Ry]$ M. Rychlik, *Bounded variation and invariant* measures, Studia Mathematica 76 (1983), 69-80.
- [s] J. Schmeling, *Symbolic dynamics for* β *-shifts and self-normal numbers,* Ergodic Theory and Dynamical Systems 17 (1997), 675-694.
- **[z]** R. Zweimiiller, *Ergodic* structure and invariant *densities of non-Markovian* interval maps with indifferent fixed points, Nonlinearity 11 (1998), 1263-1276.